Mixed-matrix membranes with enhanced antifouling activity: probing the surface-tailoring potential of Tiron and chromotropic acid for nano-TiO2
نویسندگان
چکیده
Mixed-matrix membranes (MMMs) were developed by impregnating organofunctionalized nanoadditives within fouling-susceptible polysulfone matrix following the non-solvent induced phase separation (NIPS) method. The facile functionalization of nanoparticles of anatase TiO2 (nano-TiO2) by using two different organoligands, viz. Tiron and chromotropic acid, was carried out to obtain organofunctionalized nanoadditives, FT-nano-TiO2 and FC-nano-TiO2, respectively. The structural features of nanoadditives were evaluated by X-ray diffraction, X-ray photoelectron spectroscopy, Raman and Fourier transform infrared spectroscopy, which established that Tiron leads to the blending of chelating and bridging bidentate geometries for FT-nano-TiO2, whereas chromotropic acid produces bridging bidentate as well as monodentate geometries for FC-nano-TiO2. The surface chemistry of the studied membranes, polysulfone (Psf): FT-nano-TiO2 UF and Psf: FC-nano-TiO2 UF, was profoundly influenced by the benign distributions of the nanoadditives enriched with distinctly charged sites ([Formula: see text]), as evidenced by superior morphology, improved topography, enhanced surface hydrophilicity and altered electrokinetic features. The membranes exhibited enhanced solvent throughputs, viz. 3500-4000 and 3400-4300 LMD at 1 bar of transmembrane pressure, without significant compromise in their rejection attributes. The flux recovery ratios and fouling resistive behaviours of MMMs towards bovine serum albumin indicated that the nanoadditives could impart stable and appreciable antifouling activity, potentially aiding in a sustainable ultrafiltration performance.
منابع مشابه
Performance of Chemically Modified TiO2-poly (vinylidene fluoride) DCMD for Nutrient Isolation and Its Antifouling Properties
The surface properties of TiO2-PVDF nanocomposite membranes were investigated by incorporating different chemically modified TiO2 nanoparticles into the poly (vinylidene fluoride) (PVDF) matrix. The nanocomposite membranes were prepared via dual coagulation bath diffusion and the induced phase inversion method. The membrane surface morphologies were investigated by using SEM and AFM and related...
متن کاملMixed matrix membranes prepared from high impact polystyrene with dispersed TiO2 nanoparticles for gas separation
The current study presents synthesis and characterization of high impact polystyrene - TiO2 nanoparticles mixed matrix membranes for separation of carbon dioxide from nitrogen. The solution-casting method was used for preparation of membranes. The nano mixed matrix membranes were characterized using scanning electron microscopy to ensure the suitable dispersion of nano particles in high impact ...
متن کاملElectrodialysis Heterogeneous Anion Exchange Membranes Filled with TiO2 Nanoparticles: Membranes' Fabrication and Characterization
In the current research, polyvinylchloride based mixed matrix heterogeneous anion exchange membranes were prepared by a solution casting technique. Titanium dioxide nanoparticles were also utilized as inorganic filler additive in the membrane fabrication. The effect of TiO2 nanoparticles concentration in the casting solution on the membrane physico-chemical properties was studied. Membrane wate...
متن کاملHeterogeneous Functionalization of Polyethersulfone: A New Approach for pH-Responsive Microfiltration Membranes with Enhanced Antifouling Properties
In this work, 2,2’-azo-bis-butyronitrile (AIBN) was exploited as an initiator for the successful bulk heterogeneous functionalization of polyethersulfone (PES) using polymethacrylic acid (PMAA), for the first time. To this end, pH-responsive and exceptionally low fouling membranes of extremely low grafting degrees with low adhesion and high rejection of protein were fabricated. An added advanta...
متن کاملInvestigation and characterization of TiO2-TFC nanocomposite membranes; membrane preparation and UV studies
The purpose of this study was to compare the presence or absence of UV irradiation on the separation performance and morphology of the TiO2-assembled thin film membranes (in different concentrations). Furthermore, an attempt was made to show and compare the effect of the presence of TiO2 nanoparticles in aqueous and organic phases during the interfacial polymerization proc...
متن کامل